Modern machine learning pipelines, in particular those based on deep learning (DL) models, require large amounts of labeled data. For classification problems, the most common learning paradigm consists of presenting labeled examples during training, thus providing strong supervision on what constitutes positive and negative samples. This constitutes a major obstacle for the development of DL models in radiology--in particular for cross-sectional imaging (e.g., computed tomography [CT] scans)--where labels must come from manual annotations by expert radiologists at the image or slice-level. These differ from examination-level annotations, which are coarser but cheaper, and could be extracted from radiology reports using natural language processing techniques. This work studies the question of what kind of labels should be collected for the problem of intracranial hemorrhage detection in brain CT. We investigate whether image-level annotations should be preferred to examination-level ones. By framing this task as a multiple instance learning problem, and employing modern attention-based DL architectures, we analyze the degree to which different levels of supervision improve detection performance. We find that strong supervision (i.e., learning with local image-level annotations) and weak supervision (i.e., learning with only global examination-level labels) achieve comparable performance in examination-level hemorrhage detection (the task of selecting the images in an examination that show signs of hemorrhage) as well as in image-level hemorrhage detection (highlighting those signs within the selected images). Furthermore, we study this behavior as a function of the number of labels available during training. Our results suggest that local labels may not be necessary at all for these tasks, drastically reducing the time and cost involved in collecting and curating datasets.
translated by 谷歌翻译
敏感性张量成像(STI)是一种新兴的磁共振成像技术,它以二阶张量模型来表征各向异性组织磁敏感性。 STI有可能为白质纤维途径的重建以及在MM分辨率下的大脑中的髓磷脂变化的检测提供信息,这对于理解健康和患病大脑的大脑结构和功能具有很大的价值。但是,STI在体内的应用受到了繁琐且耗时的采集要求,以测量易感性引起的MR相变为多个(通常超过六个)的头部方向。由于头圈的物理限制,头部旋转角的限制增强了这种复杂性。结果,STI尚未广泛应用于体内研究。在这项工作中,我们通过为STI的图像重建算法提出利用数据驱动的先验来解决这些问题。我们的方法称为DEEPSTI,通过深层神经网络隐式地了解了数据,该网络近似于STI的正常器函数的近端操作员。然后,使用学习的近端网络对偶极反转问题进行迭代解决。使用模拟和体内人类数据的实验结果表明,根据重建张量图,主要特征向量图和拖拉术结果,对最先进的算法的改进很大六个不同的方向。值得注意的是,我们的方法仅在人体内的一个方向上实现了有希望的重建结果,我们证明了该技术在估计多发性硬化症患者中估计病变易感性各向异性的潜在应用。
translated by 谷歌翻译
尽管机器学习分类器越来越多地用于高风险决策(例如癌症诊断,刑事起诉决策),但他们表现出了针对代表性不足的群体的偏见。公平性的标准定义需要访问感兴趣的敏感属性(例如性别和种族),这通常不可用。在这项工作中,我们证明了在这些敏感属性未知的情况下,人们仍然可以通过使用从敏感属性预测因子得出的代理敏感属性来可靠地估计并最终控制公平性。具体来说,我们首先表明,只有对完整数据分布的了解,就可以使用敏感属性预测因子获得分类器真实公平度量的上和下限。其次,我们证明了如何通过控制代理敏感属性的公平性来证明人们如何证明对真实敏感属性的公平性。我们的结果在比以前的作品明显温和的假设下得出。我们在一系列合成和真实数据集上说明了结果。
translated by 谷歌翻译
机器学习模型,尤其是人工神经网络,越来越多地用于为在各个领域的高风险场景中(从金融服务,公共安全和医疗保健服务)提供信息。尽管神经网络在许多情况下都取得了出色的性能,但它们的复杂性质引起了人们对现实情况下的可靠性,可信赖性和公平性的关注。结果,已经提出了几种A-tostori解释方法来突出影响模型预测的特征。值得注意的是,Shapley的价值 - 一种满足几种理想特性的游戏理论数量 - 在机器学习解释性文献中获得了知名度。然而,更传统上,在统计学习中的特征是通过有条件独立性正式化的,而对其进行测试的标准方法是通过有条件的随机测试(CRT)。到目前为止,有关解释性和特征重要性的这两个观点已被认为是独特的和独立的。在这项工作中,我们表明基于沙普利的解释方法和针对特征重要性的有条件独立性测试密切相关。更确切地说,我们证明,通过类似于CRT的程序实现了一组特定的条件独立性测试,评估了Shapley系数量,以执行特定的条件独立性测试,但用于不同的零假设。此外,获得的游戏理论值上限限制了此类测试的$ p $值。结果,我们授予大型Shapley系数具有精确的统计意义,并具有控制I型错误。
translated by 谷歌翻译
响应于病原体,自适应免疫系统产生结合和中和外部抗原的特异性抗体。了解个体的免疫力曲目的组成可以为该过程提供见解,并揭示潜在的治疗抗体。在这项工作中,我们探讨了抗体特定语言模型的应用,以帮助了解免疫曲目。我们介绍抗体,一种在558米天然抗体序列上培训的语言模型。我们发现在reptoIres中,我们的模型群抗体进入了类似亲和力成熟的轨迹。重要的是,我们表明培训的模型在多实例学习框架下预测高度冗余序列,识别过程中的密钥绑定残留物。通过进一步发展,这里呈现的方法将为单独的ReptoIre序列的抗原结合提供新的见解。
translated by 谷歌翻译
在病理样本的全坡度图像(WSI)中注释癌区域在临床诊断,生物医学研究和机器学习算法开发中起着至关重要的作用。但是,产生详尽而准确的注释是劳动密集型,具有挑战性和昂贵的。仅绘制粗略和近似注释是一项容易得多的任务,成本较小,并且可以减轻病理学家的工作量。在本文中,我们研究了在数字病理学中完善这些近似注释以获得更准确的问题的问题。以前的一些作品探索了从这些不准确的注释中获得机器学习模型,但是很少有人解决改进问题,在这些问题中,应该明确识别和纠正错误标签的区域,并且所有这些都需要大量的培训样本(通常很大) 。我们提出了一种名为标签清洁多个实例学习(LC-MIL)标签的方法,可在不需要外部培训数据的情况下对单个WSI进行粗略注释。从WSI裁剪的带有不准确标签的贴片在多个实例学习框架内共同处理,从而减轻了它们对预测模型的影响并完善分割。我们对具有乳腺癌淋巴结转移,肝癌和结直肠癌样品的异质WSI进行的实验表明,LC-MIL显着完善了粗糙的注释,即使从单个幻灯片中学习,LC-MIL也优于最先进的替代方案。此外,我们证明了拟议方法如何有效地完善和改进病理学家绘制的真实注释。所有这些结果表明,LC-MIL是一种有前途的,轻巧的工具,可提供从粗糙注释的病理组中提供细粒的注释。
translated by 谷歌翻译
随着现代复杂的神经网络不断破坏记录并解决更严重的问题,它们的预测也变得越来越少。目前缺乏解释性通常会破坏敏感设置中精确的机器学习工具的部署。在这项工作中,我们提出了一种基于Shapley系数的层次扩展的图像分类的模型 - 不足的解释方法 - 层次结构(H-SHAP)(H-SHAP) - 解决了当前方法的某些局限性。与其他基于沙普利的解释方法不同,H-shap是可扩展的,并且可以计算而无需近似。在某些分布假设下,例如在多个实例学习中常见的假设,H-shap检索了确切的Shapley系数,并具有指数改善的计算复杂性。我们将我们的分层方法与基于Shapley的流行基于Shapley和基于Shapley的方法进行比较,而基于Shapley的方法,医学成像方案以及一般的计算机视觉问题,表明H-Shap在准确性和运行时都超过了最先进的状态。代码和实验已公开可用。
translated by 谷歌翻译
离散状态空间代表了对统计推断的主要计算挑战,因为归一化常数的计算需要在大型或可能的无限集中进行求和,这可能是不切实际的。本文通过开发适合离散可怜的可能性的新型贝叶斯推理程序来解决这一计算挑战。受到连续数据的最新方法学进步的启发,主要思想是使用离散的Fisher Divergence更新有关模型参数的信念,以代替有问题的棘手的可能性。结果是可以使用标准计算工具(例如Markov Chain Monte Carlo)进行采样的广义后部,从而规避了棘手的归一化常数。分析了广义后验的统计特性,并具有足够的后验一致性和渐近正态性的条件。此外,提出了一种新颖的通用后代校准方法。应用程序在离散空间数据的晶格模型和计数数据的多元模型上介绍,在每种情况下,方法论都以低计算成本促进通用的贝叶斯推断。
translated by 谷歌翻译
Simulator-based models are models for which the likelihood is intractable but simulation of synthetic data is possible. They are often used to describe complex real-world phenomena, and as such can often be misspecified in practice. Unfortunately, existing Bayesian approaches for simulators are known to perform poorly in those cases. In this paper, we propose a novel algorithm based on the posterior bootstrap and maximum mean discrepancy estimators. This leads to a highly-parallelisable Bayesian inference algorithm with strong robustness properties. This is demonstrated through an in-depth theoretical study which includes generalisation bounds and proofs of frequentist consistency and robustness of our posterior. The approach is then assessed on a range of examples including a g-and-k distribution and a toggle-switch model.
translated by 谷歌翻译
广义贝叶斯推理使用损失函数而不是可能性的先前信仰更新,因此可以用于赋予鲁棒性,以防止可能的错误规范的可能性。在这里,我们认为广泛化的贝叶斯推论斯坦坦差异作为损失函数的损失,由应用程序的可能性含有难治性归一化常数。在这种情况下,斯坦因差异来避免归一化恒定的评估,并产生封闭形式或使用标准马尔可夫链蒙特卡罗的通用后出版物。在理论层面上,我们显示了一致性,渐近的正常性和偏见 - 稳健性,突出了这些物业如何受到斯坦因差异的选择。然后,我们提供关于一系列棘手分布的数值实验,包括基于内核的指数家庭模型和非高斯图形模型的应用。
translated by 谷歌翻译